Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078064

RESUMO

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Assuntos
Edema Encefálico , Cistos , Astrócitos/metabolismo , Edema Encefálico/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cloretos/metabolismo , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/metabolismo , Proteômica , Canais de Ânion Dependentes de Voltagem/metabolismo , Água/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563024

RESUMO

Adrenergic receptors (AR) belong to the G protein-coupled receptor superfamily and regulate migration and proliferation in various cell types. The objective of this study was to evaluate whether ß-AR stimulation affects the antiproliferative action of α2-AR agonists on B16F10 cells and, if so, to determine the relative contribution of ß-AR subtypes. Using pharmacological approaches, evaluation of Ki-67 expression by flow cytometry and luciferase-based cAMP assay, we found that treatment with isoproterenol, a ß-AR agonist, increased cAMP levels in B16F10 melanoma cells without affecting cell proliferation. Propranolol inhibited the cAMP response to isoproterenol. In addition, stimulation of α2-ARs with agonists such as clonidine, a well-known antihypertensive drug, decreased cancer cell proliferation. This effect on cell proliferation was suppressed by treatment with isoproterenol. In turn, the suppressive effects of isoproterenol were abolished by the treatment with either ICI 118,551, a ß2-AR antagonist, or propranolol, suggesting that isoproterenol effects are mainly mediated by the ß2-AR stimulation. We conclude that the crosstalk between the ß2-AR and α2-AR signaling pathways regulates the proliferative activity of B16F10 cells and may therefore represent a therapeutic target for melanoma therapy.


Assuntos
Melanoma , Receptores Adrenérgicos alfa 2 , Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Melanoma/metabolismo , Propranolol/farmacologia , Propranolol/uso terapêutico , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2/metabolismo
3.
Cells ; 9(6)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521795

RESUMO

Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.


Assuntos
Astrócitos/metabolismo , Comunicação Celular , Conexina 43/metabolismo , Cistos/metabolismo , Cistos/patologia , Junções Comunicantes/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Modelos Biológicos , Mutação/genética , Fosforilação , Estabilidade Proteica , Transporte Proteico
4.
Mol Neurobiol ; 56(12): 8237-8254, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31209783

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts protein-1 (MLC1) is a membrane protein expressed by perivascular astrocytes. MLC1 mutations cause MLC, an incurable leukodystrophy characterized by macrocephaly, brain edema, cysts, myelin vacuolation, and astrocytosis, leading to cognitive/motor impairment and epilepsy. Although its function is unknown, MLC1 favors regulatory volume decrease after astrocyte osmotic swelling and down-regulates intracellular signaling pathways controlling astrocyte activation and proliferation. By combining analysis of human brain tissues with in vitro experiments, here we investigated MLC1 role in astrocyte activation during neuroinflammation, a pathological condition exacerbating patient symptoms. MLC1 upregulation was observed in brain tissues from multiple sclerosis, Alzheimer's, and Creutzfeld-Jacob disease, all pathologies characterized by strong astrocytosis and release of inflammatory cytokines, particularly IL-1ß. Using astrocytoma lines overexpressing wild-type (WT) or mutated MLC1 and astrocytes from control and Mlc1 knock-out (KO) mice, we found that IL-1ß stimulated WT-MLC1 plasma membrane expression in astrocytoma cells and control primary astrocytes. In astrocytoma, WT-MLC1 inhibited the activation of IL-1ß-induced inflammatory signals (pERK, pNF-kB) that, conversely, were constitutively activated in mutant expressing cells or abnormally upregulated in KO astrocytes. WT-MLC1+ cells also expressed reduced levels of the astrogliosis marker pSTAT3. We then monitored MLC1 expression timing in a demyelinating/remyelinating murine cerebellar organotypic culture model where, after the demyelination and release of inflammatory cytokines, recovery processes occur, revealing MLC1 upregulation in these latter phases. Altogether, these findings suggest that by modulating specific pathways, MLC1 contributes to restore astrocyte homeostasis after inflammation, providing the opportunity to identify drug target molecules to slow down disease progression.


Assuntos
Astrócitos/patologia , Inflamação/patologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Adulto , Idoso , Doença de Alzheimer/patologia , Animais , Astrócitos/metabolismo , Membrana Celular/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Proteínas de Membrana/deficiência , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Mutação/genética , NF-kappa B/metabolismo , Fosforilação , Ratos , Regulação para Cima
5.
Sci Rep ; 6: 34325, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677466

RESUMO

Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.

6.
PLoS One ; 11(6): e0156897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27272042

RESUMO

INTRODUCTION: Opioid receptors are currently classified as Mu (µ), Delta (δ), Kappa (κ) plus the opioid related nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ. METHODS: We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i) increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii) stimulate the binding of GTPγ[35S], (iii) inhibit cAMP formation, (iv) activate MAPKinase, (v) stimulate receptor-G protein and arrestin interaction using BRET, (vi) electrically stimulated guinea pig ileum (gpI) assay and (vii) ability to produce analgesia via the intrathecal route in rats. RESULTS: DeNo bound to Mu (pKi; 9.55) and NOP (pKi; 10.22) and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69), increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50) and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02). cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19). For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63) that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats. CONCLUSION: Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu) and N/OFQ (NOP). This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this study DeNo displays only weak antinociceptive properties.


Assuntos
Peptídeos Opioides/química , Peptídeos/síntese química , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Cobaias , Células HEK293 , Humanos , Masculino , Peptídeos/química , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides/química , Receptores Opioides/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptor de Nociceptina
7.
Hum Mol Genet ; 23(18): 4875-86, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794859

RESUMO

Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism-epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin-proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Transtorno Autístico/genética , Epilepsia/genética , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Animais , Astrocitoma/metabolismo , Transtorno Autístico/patologia , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Linhagem Celular , Criança , Epilepsia/patologia , Estudos de Associação Genética , Células HEK293 , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Mutação , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Gêmeos Monozigóticos , Xenopus laevis/embriologia
8.
Neurobiol Dis ; 66: 1-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561067

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.


Assuntos
Astrócitos/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Estresse Oxidativo , Transporte Proteico/efeitos dos fármacos , Ratos , Canais de Cátion TRPV/metabolismo , Transferrina/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
J Biol Chem ; 288(33): 23964-78, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23836900

RESUMO

Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and µ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.


Assuntos
Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Arrestinas/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Agonismo Inverso de Drogas , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Ligantes , Modelos Biológicos , Quinuclidinas/química , Quinuclidinas/farmacologia , Receptores Opioides delta/agonistas , Tirosina/análogos & derivados , Tirosina/química , Tirosina/farmacologia , beta-Arrestinas
10.
Hum Mol Genet ; 21(10): 2166-80, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328087

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare leukodystrophy characterized by macrocephaly, subcortical fluid cysts and myelin vacuolation, has been linked to mutations in the MLC1 gene. This gene encodes a membrane protein that is highly expressed in astrocytes. Based on MLC pathological features, it was proposed that astrocyte-mediated defects in ion and fluid homeostasis could account for the alterations observed in MLC-affected brains. However, the role of MLC1 and the effects of pathological mutations on astrocyte osmoregulatory functions have still to be demonstrated. Using human astrocytoma cells stably overexpressing wild-type MLC1 or three known MLC-associated pathological mutations, we investigated MLC1 involvement in astrocyte reaction to osmotic changes using biochemical, dynamic video imaging and immunofluorescence techniques. We have found that MLC1 overexpressed in astrocytoma cells is mainly localized in the plasma membrane, is part of the Na,K-ATPase-associated molecular complex that includes the potassium channel Kir4.1, syntrophin and aquaporin-4 and functionally interacts with the calcium permeable channel TRPV4 (transient receptor potential vanilloid-4 cation channel) which mediates swelling-induced cytosolic calcium increase and volume recovery in response to hyposmosis. Pathological MLC mutations cause changes in MLC1 expression and intracellular localization as well as in the astrocyte response to osmotic changes by altering MLC1 molecular interactions with the Na,K-ATPase molecular complex and abolishing the increase in calcium influx induced by hyposmosis and treatment with the TRPV4 agonist 4αPDD. These data demonstrate, for the first time, that MLC1 plays a role in astrocyte osmo-homeostasis and that defects in intracellular calcium dynamics may contribute to MLC pathogenesis.


Assuntos
Astrócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Cátions Bivalentes , Cistos/genética , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Mutação , Osmose , Transfecção
11.
Br J Pharmacol ; 164(8): 1917-28, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21615725

RESUMO

BACKGROUND AND PURPOSE: Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the ß-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload. EXPERIMENTAL APPROACH: Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg(-1) ·day(-1) ) was administered in drinking water for 14 days. KEY RESULTS: Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL(-1) , blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. ß-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of ß-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a ß(1) -adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice. CONCLUSIONS AND IMPLICATIONS: Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via ß(2) -adrenoceptor-mediated mechanisms.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Cardiomiopatias/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes cdc , Propranolol/farmacologia , Animais , Cardiomiopatias/diagnóstico por imagem , Modelos Animais de Doenças , Ecocardiografia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Ensaio Radioligante , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta/genética
12.
Biochem J ; 438(1): 191-202, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21561432

RESUMO

The functional selectivity of adrenergic ligands for activation of ß1- and ß2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of ß1- and ß2-ARs to form a complex with the G-protein ß-subunit or ß-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of ß1-/ß2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the ß2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the ß1-AR interacts more efficiently than ß2-AR with arrestin, but less efficiently than ß2-AR with G-protein. A group of ligands exhibited ß1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via ß1-AR, but acted as a competitive antagonist of adrenaline via ß2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the ß1-AR subtype.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Arrestina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Catecolaminas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química , Transdução de Sinais
13.
J Biol Chem ; 285(17): 12522-35, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20189994

RESUMO

The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of mu and delta receptors with G protein or beta-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gbeta(1). In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was G alpha-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at delta and mu receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (delta) or partial agonists (mu) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation.


Assuntos
Arrestinas/metabolismo , Membrana Celular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Entorpecentes/farmacologia , Oximorfona/farmacologia , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Arrestinas/agonistas , Arrestinas/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Encefalinas/antagonistas & inibidores , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Toxina Pertussis/farmacologia , Receptores Opioides delta/genética , Receptores Opioides mu/genética , beta-Arrestina 2 , beta-Arrestinas
14.
Neurobiol Dis ; 37(3): 581-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19931615

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare congenital leukodystrophy caused by mutations in the MLC1 gene that encodes a membrane protein of unknown function. In the brain MLC1 protein is mainly expressed in astrocyte end-feet, localizes in lipid rafts and associates with the dystrophin glycoprotein complex (DGC). Using pull-down and co-fractionation assays in cultured human and rat astrocytes, we show here that MLC1 intracellular domains pull-down the DGC proteins syntrophin, dystrobrevin, Kir4.1 and caveolin-1, the structural protein of caveolae, thereby supporting a role for DGC and caveolar structures in MLC1 function. By immunostaining and subcellular fractionation of cultured rat or human astrocytes treated with agents modulating caveolin-mediated trafficking, we demonstrate that MLC1 is also expressed in intracellular vesicles and endoplasmic reticulum and undergoes caveolae/raft-mediated endocytosis. Inhibition of endocytosis, cholesterol lowering and protein kinases A- and C-mediated MLC1 phosphorylation favour the expression of membrane-associated MLC1. Because pathological mutations prevent MLC1 membrane expression, the identification of substances regulating MLC1 intracellular trafficking is potentially relevant for the therapy of MLC.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Leucoencefalopatias/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Encéfalo/fisiopatologia , Cavéolas/ultraestrutura , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Complexo de Proteínas Associadas Distrofina/metabolismo , Endocitose/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/fisiopatologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Fosforilação , Proteína Quinase C/metabolismo , Transporte Proteico/fisiologia , Ratos
15.
BMC Cell Biol ; 9: 56, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18840275

RESUMO

BACKGROUND: Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR) sequence to the N-terminus of the G protein alpha-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the beta2-adrenergic receptor (beta2AR) and Galphas indicated that the fusion to the alpha-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Galphas-fused beta2AR. RESULTS: The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized beta2AR returned rapidly to the plasma membrane, beta2AR-Galphas did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. CONCLUSION: The covalent linkage between beta2AR and Galphas does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Galpha is not necessary for the transit to early endosomes, but is an essential requirement for the correct post-endocytic sorting and recycling of the two proteins.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Células Cultivadas , Imunofluorescência , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Fosforilação , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
16.
Biochem J ; 409(1): 251-61, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17868039

RESUMO

Green bioluminescence in Renilla species is generated by a approximately 100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein-protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and beta-arrestins. We show that complementation-induced BRET allows detection of the GPCR-beta-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response.


Assuntos
Teste de Complementação Genética , Animais , Chlorocebus aethiops , Citosol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucina/química , Luminescência , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Renilla , Trombina/química
17.
Aesthetic Plast Surg ; 28(5): 288-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15666044

RESUMO

The main objective of this study was to decrease breast shape distortion during pectoralis muscle contraction following submuscular augmentation mammaplasty. We followed 348 patients who had retromuscular augmentation mammoplasty: 251 (72.1%) had polyurethane-covered gel-filled, 97 (27.9%) had textured-silicone gel-filled implants. Among the 348, 46 had surgery following the Regnault technique and 302 had surgery by the below-mentioned technique. Periareolar incision, bipartision of breast parenchyma down to the fascia, undermining of breast base from the fascia downward to the inframammary sulcus or a little below it, detaching of muscle off the thoracic cage, disinsertion of abdomino-costal pectoralis attachments. Full thickness incision of pectoralis muscle on a vertical line on the nipple projection for 2-5 inches. Placing of prosthesis. Drainage. Closure. No objective evaluation was used, only clinical judgments by three observers--the surgeon, a nurse and the patient herself. The results showed a definite decrease of the dynamic deformity among patients in whom the author's technical variation was carried out. This technique allows also, for decreasing the upward pushing of the implant during pectoralis muscle contraction and facilitates stretch of the breast tissue in patients with tighter breast envelopes. Despite lack of precise measurements, conclusions drawn from clinical judgments, taken as objectively as possible, suggest that the use of this technique may offer the solution of an otherwise disturbing collateral effect, frequently seen after this operation.


Assuntos
Implante Mamário/efeitos adversos , Implante Mamário/métodos , Contração Muscular , Retalhos Cirúrgicos , Implantes de Mama , Feminino , Seguimentos , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Poliuretanos , Géis de Silicone , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA